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ABSTRACT 
 
 
The objective of this research is to demonstrate and validate the effectiveness of 

impulse thermography for use in nondestructive testing on Steel-Concrete Composite 

Structures, and to examine the limitations of impulse thermography with parametric 

studies.  Numerical results from experiments and finite element models were obtained in 

order to verify the use of thermography for composite structures.  This research has 

shown the effectiveness of impulse thermography, but has displayed that this method of 

nondestructive testing (NDT) has its limitations.   

 

It was found that, the finite element analysis technique can be successfully used to 

model infrared thermography for nondestructive testing.  The finite element model 

results can reasonably locate defects within concrete specimens; although, when 

compared to impulse thermography BAM experiment, the surface temperature 

differences between the BAM model and the BAM experiment had slightly different 

results.    

 

To investigate the effectiveness and limitations of thermography as a form of NDT on 

Steel-Concrete Composite (SCC) walls, several parameters were studied.  The 

parameters mainly focused on the effects of the change in depths of the defects, heating 

intensity and heating durations of the analysis.  The results of the study demonstrate that 

defects within the specimen were detectable at certain depths, heating intensities and 

heating duration.  Limitations of the detectability of the defects were seen corresponding 

to the different parametric cases.  This was clearly shown on the finite element infrared 

thermography models.  One of the most evident limitations of detecting defects in the 

subsurface of the specimen was the depth of the defect.  Other parameters such as the 



www.manaraa.com

2 
 

duration of the heating and cooling process helped determine characteristics of the 

defects in the model.  For example, longer heating and cooling durations allowed a more 

definitive thermographic surface image of deeper defects that cannot be seen in shorter 

time durations.            
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CHAPTER 1  
INTRODUCTION 

 
 

1.1 INTRODUCTION 

In the United States, there are currently 104 commercially operating nuclear reactors 

and there is an expected four to six newly developed units that are to be built by 2020; 

the first of those resulting from 16 license applications made since the mid 2007 to build 

24 new nuclear reactors.  With several years of research and development, several 

more efficient and structurally sound nuclear power plants reactor designs have been 

tested and will soon be put into commercial use in the United States.  One of the most 

recently tested designs is the Steel-Concrete Composite wall containment structure.  

This internal containment structure is composed of Steel-plate barriers supported by 

concrete and reinforcing steel within the two steel-plate barriers similar to a “sandwich 

wall”.   

 

The construction of the Steel-Concrete Composite walls are prefabricated modules, built 

as composite sandwich walls.  These containment structures are considerably difficult to 

inspect for internal defects or defects in the concrete layer between the two exterior steel 

plates.  In order to prove quality assurance of the Steel-Concrete Composite wall 

structures, nondestructive testing methods are essential to implement the inspection 

task of these structures.  This research focuses on an evaluation of the usefulness of 

infrared thermography as an inspection tool for Steel-Concrete Composite wall 

structures (hereafter referred to as SCC wall) in nuclear containment structures. 
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1.2 RESEARCH OBJECTIVE 

The objective of this research is to demonstrate and validate the effectiveness of 

impulse thermography as a nondestructive test (NDT) method for detecting internal 

defects in Steel-Concrete Composite wall structures.   

 

In this research, finite element analyses are performed to accurately validate and 

replicate the nondestructive testing method of infrared thermography on concrete and 

Steel-Concrete Composite walls.  This approach demonstrates the usefulness of infrared 

thermography in any newly designed Steel-Concrete Composite wall structures. 

1.3 RESEARCH APPROACH 

In order to achieve the objective of this research, the following approach was taken:  

1. Identify the use of impulse thermography as an effective nondestructive testing 

tool for inspecting Steel-Concrete Composite construction. 

2. Verify the finite element approach to modeling impulse thermography by 

modeling existing experiments documented in the Technical University of Berlin, 

BAM experimental literature.  

3. Use the verified modeling approach to build a finite element model and test the 

Steel-Concrete Composite wall model, with several parametric cases. 

4. Generate the results from the Steel-Concrete Composite wall model and 

formulate a conclusion based on the data obtained. 

 

1.4 SUMMARY OF FINDINGS 

The findings from this study of impulse thermography as a form of nondestructive testing 

on Steel-Concrete Composite structures are summarized below. 
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The BAM experiment was a concrete infrared thermography experiment conducted by 

the Technical University of Berlin.  The results of this experiment were used to validate 

the finite element model developed in this study for infrared thermography as a form of 

NDT.  During the assessment of the results obtained in the BAM experiment, there was 

discrepancy with the surface temperature data recorded for one of the defects.  

Furthermore, a summary of the results obtained from the finite element model does differ 

from the results of the BAM experiment maximum difference in surface temperature over 

the defects.  The Table 3.1 shows that there is a range from .02 Kelvin to 4.95 Kelvin, 

difference at the measured defects.  This is not a considerably significant difference in 

results between the experiment and the model. However, the results from the tables and 

graphs in Chapter 3, show an analogous surface temperature behavior between the 

model and the experiment data.  For example, the deeper defects caused a smaller 

surface temperature difference in both cases or the larger defects caused a higher 

surface temperature difference in both cases. 

 

Due to the correlation between the BAM experiment and the model results, it can be 

concluded that the finite element model does capture the correct behavior of infrared 

thermography, but not with precise accuracy. 

 

Based on the parametric cases conducted in Chapter 5 for the SCC wall model, it can 

also be concluded that the detection of the defects in the composite structure is limited 

based on the depth of the defect.  In the analyses conducted in Chapter 5 and Chapter 

6, it is shown that all defects directly under the steel plate at approximately .5 inches, 

can be easily distinguished by infrared thermography.   At approximately 1.5 inches 

depth, detection of defects is visible at certain heat fluxes and heating durations.  In 
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addition, at approximately 3.5 inches depth, detection of defects is not visible based on 

the parameters used in this study. 

 

Also studied in Chapter 6 is how each of the different parameter fluctuations can be 

used to optimize the best thermographic image in locating defects and other 

abnormalities.  For example, Figure 6.4 and Figure 6.6 shows that the deeper defects 

can be seen better at longer heating and cooling durations, where defects close to the 

surface may not show a clear difference in surface temperature; or Figures 6.13 and 

6.14 display a large differences in surface temperature when the heat flux is increased. 

 

1.5  NOTATION 
 
The following notation is used in this report: 
 
A area 

ܿ specific heat capacity  

D Depth  

    total amount of thermal radiationܧ

݁ emissivity 

݄ convection heat transfer coefficient  

J Joules  

K Kelvin  

݇ thermal conductivity  

m meters 

Q  radiant energy exchange  

  heat flux density ݍ

  heat transfer due to convectionݍ

ܴ rate of energy (radiation) per unit area of surface 

s seconds  

ܶ  temperature 

ܶ௫∆ maximum temperature difference 

 



www.manaraa.com

7 
 

௦ܶ௨ material surface temperature 

∞ܶ surrounding ambient temperature 

 time ݐ

  ௫∆ time of maximum temperature differenceݐ

  ௫maximum temperature change occurrence்∆ݐ

ܷ potential energy  

 absorptivity ߙ

   thermal diffusivityߙ

  Emissivity ߝ

  reflectivity ߩ

 Stefan-Boltzmann constant (5.67 X 10-8 Wm-2K-4) ߪ

߬ transmissivity 
oc Celsius  

∆ ܶ௫ maximum temperature change  

 temperature gradient ܶ
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CHAPTER 2 
RESEARCH BACKGROUND 

 
 

2.1 INTRODUCTION 

Recommendations on nondestructive testing methods for composite structures are given 

in the American Concrete Institute committee 349.3R report, “Evaluation of Existing 

Nuclear Safety-Related Concrete Structures”.  The report describes several different 

alternatives to evaluate newly constructed structural components and existing nuclear 

structural components.  Structural defects can be evaluated by means of visual 

inspection, nondestructive testing, invasive testing and analytical methods that are 

supplemented with other forms of testing.  In the applications of SCC wall structures, 

several difficulties may arise in the evaluation of detecting abnormalities within the 

subsurface due to the composite structure being two extremely different material 

properties, the thickness of the materials and the large area of inspection that would be 

required for composite walls used in nuclear reactors. With the unique design of the 

SCC wall, infrared thermography has several characteristics that may allow this method 

of nondestructive testing to be highly effective in detecting defects within the concrete 

component of the structure, which are discussed later in the report. 

 

2.2 NONDESTRUCTIVE TESTING 

Nondestructive test (NDT) methods are used to determine concrete physical properties 

and to evaluate the condition of concrete in deep foundations, bridges, buildings, 

pavements, dams and other concrete constructions.  The advantages of using NDT are 

the ability to assess concrete structural performance without causing significant damage 

to the structure.  The main methods of NDT are visual inspection, stress-wave methods 
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for deep foundations, nuclear methods, magnetic and electrical methods, penetrability 

methods, infrared thermography and radar.  NDT also has a large economical 

advantage because the method allows one to conduct a comprehensive structural 

assessment of the existing structure, without causing any damages or alterations to the 

structure.  Several NDT methods can also be performed in a large-scale situation and in 

a quick time span compared to other methods that required samples to be tested in the 

laboratory.  

 

For each NDT method, there are several advantages and limitation that favors certain 

methods for applications involving nuclear power plants.  Table 2.1 summarizes some of 

the NDT methods advantages and limitations.  The focus of this report is infrared 

thermography, which is discussed in the next section. 

 

2.3 THERMOGRAPHY 

Infrared thermography as a method of nondestructive testing has been used to identify 

internal defects, delaminations, and cracks in concrete structures.  Infrared 

thermography devices sense the emission of thermal radiation and produces visual 

images of the varying thermal signals.  This concrete testing method is based primarily 

on two principles.  The first principle is energy in the form of electromagnetic radiation 

which is constantly being emitted from the surface of an object.  The rate of energy 

emitted per surface area is given by the Stefan-Boltzmann law:  

 

 

ܴ ൌ  ସܶߪ݁
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Where R is the rate of energy (radiation) per unit area of surface, ݁ is the emissivity, ߪ is 

defined as Stefan-Boltzmann constant (5.67 X 10-8) and ܶ is the temperature of the 

object’s surface.  The electromagnetic radiation emitted from the surface of an object is 

given off in the form of wavelengths that have characteristics that are dependent on the 

temperature.  With an increase in temperature, the wavelength becomes shorter.  At a 

sufficiently high temperature, the radiation becomes visible in the wavelength spectrum.  

Radiation at the wavelength less than 0.1 ηm pertains to gamma rays, x-rays are usually 

experienced at levels of 0.1 to 10 ηm , visible light has a wavelength of about 0.4 to 1 

μm  and infrared radiation wavelengths range from 1 to 14 μm.  Radiation can be 

detected by special sensors that produce electrical signals in proportion to the amount of 

incident radiant energy.  Infrared sensors can then be calibrated to send output data in 

terms of temperature; thus allowing the surface temperature of concrete to be measured.   

 

The second principle corresponds to how subsurface anomalies affect the heat flow 

through concrete.  Depending on the size, depth and type of anomalies within the 

concrete structure, a change in heat flow will occur and cause a localized difference in 

temperature around the area of heat flow disruption.  This phenomenon is discussed 

later in this report and will play a significant role in the detection of abnormalities within 

concrete. 

 

Infrared thermography as a method of nondestructive testing on concrete is influenced 

greatly by two main heat transfer mechanisms: conduction and radiation (which are 

discussed in more depth later in the report).  Radiation emission and absorption of 

objects depends upon the emissivity of the material’s surface.  Emissivity is defined as 

the ability of the material to radiate energy into or out of a body.  A perfect “black body” 

is an idealized physical body that absorbs all incident electromagnetic radiation.  
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Absorption of radiation can be altered or reduced due to several factors such as rougher 

surfaces that cause higher emissivity values; therefore, different surface textures and 

finishes will influence the surface radiation properties.  Other parameters that impact the 

emitted infrared radiation measurements are: concrete surface emissivity, surrounding 

ambient temperature, thermal conductivity, volumetric-heat capacity, thickness of the 

heated surface, and other environmental influences.  It is very unlikely for a body to 

behave as a perfect “black body”. 

 

Thermographic monitoring and the data analysis systems comprise of three main 

components: a detector unit, a data acquisition or analysis device, and a visual image 

recorder.   The infrared detectors are often an optical camera with lenses that transmit 

only infrared radiation within the wavelengths of 1 to 12 μm.  Normally, infrared detectors 

are cooled by liquid nitrogen to a low temperature, which allows the device to sense 

temperature variations as minute as 0.1 Celsius.  Data obtained by the detectors unit are 

digitized and displayed as shades of grey or color on the image displayer.  Temperature 

varying surfaces are signified by variation of darker shades or different colors depending 

on the software.   

 

2.4 HEAT TRANSFER 

Heat transfer is a primary component in the use of thermography as a form of 

nondestructive testing.  Heat transfer can be simply defined as the flow or transfer of 

thermal energy from one body to another.  There are three modes of heat transfers, 

which were all used in the modeling the BAM experiment in the finite element analysis.  

They are conduction, convection and radiation. 
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2.4.1 Conduction 

The transfer of thermal energy resulting from microscopic diffusion and collisions of 

particles within a body due to a temperature gradient is called conduction.  The basic 

equation for conductive heat transfer is given by Fourier’s law: 

 

ݍ ൌ െ݇ · ,ݔሺܶ ,ݕ ,ݖ  ሻݐ

 

Where q is the heat flux density (rate of heat transfer), k is the thermal conductivity of the 

material and T is the temperature gradient of the element in the three directions of the 

local axis.  The negative sign in the equation represents the heat flow from the region of 

higher temperature to regions of lower temperature.  The thermal conductivity is the 

property of a material to conduct heat.  Therefore, material with high conductivity will 

allow heat transfer to occur at a high rate across the material’s body.  This parameter 

becomes important in this study because defects  or non-homogeneous characteristics 

within the subsurface of the objects are shown on the infrared images as surface 

temperature fluctuations during the infrared thermography analysis.  The changes of 

temperatures on the surface of the specimen are caused by the different thermal 

properties that are found in the defects  or abnormalities within the specimen 

subsurface.    

 

2.4.2 Convection 

Convection heat transfer occurs due to molecular motion and bulk fluid motion in a 

material.  The transfer of heat due to convection can occur in two forms, natural 

convection and forced convection.   In the BAM experiment and model, natural 

convection was used.  Natural convection is driven by the material density differences 
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associated with the temperature changes generated by external heating or cooling 

forces.  The basic equation for convection heat transfer is given by Newton’s law: 

 

ݍ ൌ െ݄ · ሺ ∞ܶ െ ௦ܶ௨ሻ 

 

Where ݍ is defined as the rate of heat transfer, ∞ܶ is the fluid or surrounding ambient 

temperature, ௦ܶ௨ is the material surface temperature, and h is the convection heat 

transfer coefficient.  The convection heat transfer coefficient is also known as the film 

coefficient, and it is defined as a single quantity that subsumes a variety of features of 

heat transfer properties such as thermal conductivity, density, specific heat and 

viscosity. 

 

2.4.3 Radiation 

Radiation can be defined as the energy emitted and absorbed by a charged particle, 

generated by the thermal motion.  Thermal radiation is the emission of electromagnetic 

waves from all matter that has a temperature greater than absolute zero.  Essentially, 

thermal radiation absorption, reflection and transmission are dependent on various 

properties of the surface it is emanating from or traveling towards.   Surface absorption, 

reflection and transmission are all important characteristics of radiation.  The three 

thermal radiation characteristics are defined by three variables which are designated in 

this report as absorptivity (ߙ), reflectivity (ߩ), and transmissivity (߬); each term 

representing thermal radiation that a body absorbs, reflects and transmits, respectively.  

The mathematical relationship that all three of these parameters share is shown in the 

equation below:  
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ߙ  ߩ  ߬ ൌ 1 

 

If the radiating body’s surface temperature is in thermodynamic equilibrium and the 

surface has a perfect absorptivity at all wavelengths, it is characterized as a black body.  

The total radioactive intensity of a black body can be expressed by the Stefan-

Boltzmann law: 

 

ܧ ൌ ߪ · ܶସ
 

 

Where ߪ is Stefan-Boltzmann constant which has a value of 5.67x10-8 W/(m2K4), and T is 

the absolute temperature in Kelvin.  In most cases, a “grey body” is the common 

scenario that is observed rather than a blackbody.  A grey body refers to a radiating 

body that is not completely in thermodynamic equilibrium and does not have a perfect 

absorptivity.  The total amount of thermal radiation, ܧ, emitted by a grey body is given 

by the equation below:  

 

ܧ ൌ ߝ · ߪ · ܶସ
 

 

Where ߝ  is the emissivity of a material, which reflects on the material’s ability to emit 

energy by radiation from its surface. 

  

Heat exchange between the two grey body surfaces (concrete specimen and external 

heating source) can be illustrated as two very large parallel plates.  In the finite element 

model, the external heating surface is applied as an evenly distributed thermal loading 

throughout the entire surface of the specimen.   The distance between the two bodies, 
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(external heating source and concrete surface) is relatively small in comparison to the 

body’s surface.  Therefore, by using the assumption of the two parallel “infinite” plates 

(infinitely large surface area compared to an extremely small strip or distance defined as 

dx between the two body’s surfaces) the radiant heat emitted by surface 1 is either 

absorbed by surface 2 or reflected back to surface 1 in indefinite process.  This process 

can be algebraically expressed and solved for the total radiant energy exchange, Q:  

 

Q ൌ
߳1 െ ߳2

1 െ 2ߩ1ߩ
· ሺߪ ଵܶ

ସ െ ଶܶ
ସሻܣ 

 

Where A is the plate area and the subscripts 1 and 2 represent the two different plate 

surfaces, shown in Figure 2.1.  The emissivity coefficient used in modeling the thermal 

radiation was obtained by experimental data extracted from the BAM experiment.  This 

heat-exchanged process is implemented in the finite element model by determining the 

convection heat transfer coefficient, emissivity and conductivity. 

 

2.5 FINITE ELEMENT ANALYTICAL APPROACH 

This section introduces the analytical and theoretical approach of finite element models 

used to simulate and investigate nondestructive testing using infrared thermography on 

concrete and composite structures.   

 

The finite element software used in this research was Abaqus CAE 6.11-1, which is a 

commercially available nonlinear finite element analysis program.  The analysis 

procedure of the finite element approach in Abaqus is structured by a division of the 

“problem histories” into steps.  Each step is any suitable phase of the problem history of 
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the analysis, such as a thermal transient analysis, dynamic transient analysis, structural 

analysis, and etc. In each step, an analysis procedure is chosen to define the type of 

analytical method that are performed during the individual segments of the model; in the 

case of the impulse thermography finite element model, a transient heat transfer 

analysis was used to replicate the BAM experiment previously performed at the 

Technical University of Berlin.  A transient heat transfer analysis is the change in heat 

transfer in a given time interval, in which the system is not in thermal equilibrium.  The 

main concern of this model is the temperature change that can be detected on the 

surface of the specimen.  Therefore, the type of transient heat transfer analysis 

conducted in Abaqus was an uncoupled heat transfer analysis.  This type of heat 

transfer analysis can analyze the temperature fields without the knowledge of the stress 

and deformation state or electrical field in the bodies being used.  The change of 

temperature over duration of time can be expressed by the transient heat transfer 

balance equation below:   

  

ݐ݀ܣ௫ݍ  ݐ݀ݔ݀ܣܳ ൌ ∆ܷ   ݐ݀ܣ௫ାௗ௫ݍ

 

Where the entire equation above represents the change in energy of the entire system.  

The group of terms in the equation on the left of the equals sign (ݍ௫ݐ݀ܣ), represents the 

heat conduction into the controlled volume; while the second group of terms on the left 

side of the equals sign (ܳݐ݀ݔ݀ܣሻ, relates to the internal energy or heat source created 

within the control volume.  On the right side of the equation, the first term is the specific 

heat mass capacity and the last terms in the energy equation is the heat conduction 

leaving the controlled volume. 
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In order to simplify the model and shorten the modeling time, a linear finite element heat 

transfer analysis was performed.  Although this experiment has several non-linear 

material and heat transfer properties, a linear method of analysis was chosen due to the 

low temperature changes occurring during the BAM experiment and finite element 

model.  The low external heating sources applied to the specimen in the experiment and 

model only caused a small change in temperature for the specimen.  The small change 

in temperature would have an insignificant effect on the results of the model if a non-

linear analysis were chosen.   With the small change of temperature fluctuation, a non-

linear analysis would not provide more accurate results, such as the case of a drastic 

temperature change of a, i.e. Structural fire analysis. 

 

2.6 FINITE ELEMENT MODEL 

The finite element model consists of the three heat transfer mechanisms which affects 

the thermal properties of the specimen’s ability to allow heat to penetration and diffusion 

heat through the material body.  In addition, the three thermal mechanisms also serve as 

heat transfer boundary condition in the analysis.  The heat transfer mechanisms that 

were discussed in the previous section (Section 2.4), play an extremely important role in 

the finite element model presented in this report.  

 

The external heating source was modeled using a uniformly distributed surface heat flux, 

with instantaneous amplitude for the designated time interval.  Only the top and bottom 

surface areas of the specimen have radiation and convection boundary conditions as 

specified.  The boundary conditions for radiation and convection were defined by the 

ambient temperature of the surrounding medium and the thermal coefficients for 

radiation and convection were selected by literature pertaining to concrete thermal 
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properties.  The sides and edges of the specimen were modeled as adiabatic boundary 

conditions.  

 

The specimen was also modeled in a 3-dimensional modeling space with a defined 

deformable type of material analysis.  In order to create smooth meshing, the concrete 

specimen was created using several separate parts analytically connected by nodal tie 

constraints.  A nodal tie constraint analytically ties all separated parts into one part. The 

meshing comprised of small discrete cubic elements, which are discussed in the next 

chapter.  The element type used in this thermal analysis was a diffusive heat transfer 20 

node quadratic heat transfer brick (DC3D20). 
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Table 2.1: Several methods of nondestructive testing evaluation for concrete structures, 
described by ACI Committee 228.2R-13 manual 

Method Advantages Limitations 
Direct 
transmission  
radiometry 
 

Portable equipment 
available for determination 
of in-place  
Density.  Minimal operator 
skill is required. 
 

Operators must be licensed. 
Available equipment limited 
to path lengths less than 12 
in.  Requires access to inside 
of member or opposite faces 
 

Parallel seismic 
 

Determines whether 
concrete structure is 
uniform 
 

Does not distinguish the type 
of flaw and location of the 
flaw. 

Radiography Provides view of the internal 
structure of the object.  Use 
of image plates allows for 
digital signal processing to  
extract more information 
about the internal structure. 
Tomography of 
reinforcement in large 
columns and beams  
can be achieved. 

Operators must be licensed 
and skilled. It is expensive 
and difficult to identify cracks 
and limited penetration. 

Covermeter Able to locate reinforcing 
bars and other embedded 
metal  
objects.  Equipment is 
lightweight, portable, and 
easy to use.  Cover depth 
can be estimated. 
 

Low accuracy and can only 
detect ferromagnetic objects.  
Maximum penetration is 
limited. 

Ground- 
Penetrating radar 

Rapid scanning, very 
sensitive to embedded 
metals and ability to 
penetrate concrete-air 
interfaces. 

Limited to cone-shaped 
volume for scan. Cracks and 
necking are not easy to 
detect. 

Impact-echo Access to only one face 
needed; equipment is 
commercially available and 
capable of locating a variety 
of defects. 

Experienced operator is 
required and limited member 
thickness. 

Impulse-response 
method 

Determines the location of 
cracks and constrictions in 
the concrete structure. 

Results interpretation is 
complex.  Similar limitations 
on geometry of shafts tested 
as sonic-echo 
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Figure 2.1: Representation of two flat parallel plates with radiation being emitted, 
absorbed and reflected by both surfaces of the plates (Jun Lee, Pessiki, Kohno, 

Analytical Investigation of Steel Column Fire Tests, 2006). 
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CHAPTER 3 
BAM EXPERIMENT VERIFICATION 

 
 

3.1 INTRODUCTION 

This chapter presents the verification of the finite element approach used in this 

research to model infrared thermography.  To verify the approach, the finite element 

models developed are compared with the results of the infrared thermography tests of a 

concrete block specimen conducted at Technical University of Berlin (TUB) by 

Wiggenhauser, Hille and Cziesieki (2004).  In this report the research and experiments 

performed by TUB are referred to as the BAM tests. 

 

Section 3.2 of this report explains the background of the BAM test, and includes both a 

description of the experiments that were conducted along with a presentation of the key 

results that were found.  These results are later used in this research to verify the finite 

element model approach of infrared thermography. 

 

3.2 BAM TEST SETUP  

The BAM test consisted of experimental and analytical studies to evaluate the use of 

Infrared thermography as a means to detect defects in concrete structures.   The 

experiment consisted of three concrete specimens each consisting of the same 

dimensions, but with different internal defects and abnormalities within the concrete 

subsurface.   

 

Although three concrete specimens were tested in this experiment, only one of the tests 

conducted was used in this report and research to validate the finite element model 
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(shown in Figure 3.1).  The experiment consisted of a concrete block measuring 1.5 m X 

1.5 m X 0.5 m.  Within the concrete subsurface, the defects were made by casting 

polystyrene foam blocks into the concrete.  The concrete specimen consisted of eight 

defects which are simulated voids made by the polystyrene blocks.  The defects were 

grouped into two different sizes; one group consisted of a 20 cm x 20 cm x 10 cm cubic 

defects and the other consisted of 10 cm3 cubic defects   The defects are located at four 

different depths, which are 0.02 m, 0.04 m, 0.06 m and 0.08 m from the top of the 

concrete surface on the side facing the external heating source.  

 

Figure 3.2 is a photograph of the test hardware and concrete specimen tested.  As 

shown in Figure 3.2, the tests were performed using three radiators each having up to 

2,400 watts of power.  The heating process was done dynamically with the three 

radiators longitudinally arranged as shown in Figure 3.2.  The radiators move repeatedly 

at speeds of .12 meters per second over the length of the concrete specimen.  They are 

aligned uniformly parallel to the arrangement of larger surface area of the concrete 

specimen, moving in the direction from left to right at about 15 cm from the specimen’s 

surface.  The infrared camera used in the experiment was a ThermaCAM SC1000.  The 

features of the ThermaCAM SC2100 unit include a focal plane array detector consisting 

of a 256 by 256 detector elements and its own computer operational system.  Other 

specifications for the infrared camera used can be found on Table 3.1. 

 

In order to sustain a controlled experimental environment, the experiment was 

conducted in a temperature-controlled room, with a recorded heating time, heating 

temperature, air temperature, and humidity.  The recorded data was then entered into 

computer software for analysis processing.  The infrared camera was positioned at a 
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distance of 2.8 m away from the concrete surface and was at a measured height of 0.82 

m from the ground, allowing the image to capture the entire concrete specimen. 

 

3.3 BAM TEST PROCEDURE 

The temperature-time curves of a reference point located in a region away from the flaw 

(defect) and a point cursor directly over the center of the flaw (defect) were compared.   

Furthermore, the temperature difference curve (the difference between the reference 

point temperature and the temperature directly over the void) was calculated in order to 

locate the maximum temperature difference at a given time in the experiment.  The 

purpose of evaluating the temperature at the surface in respect to time is because the 

other influencing parameters such as geometry and material characteristics are held 

constant in this experiment.  Thus, the largest dependencies on the results are reflected 

upon by the defect’s depth, heating duration and heating temperature, which are all 

reflected in the surface temperature versus time curve.  

 

The concrete specimen surface temperature was measured at 6 different heating 

durations of 300, 600, 900, 1800, 2700 and 3600 seconds.  The experiment consisted of 

a constant heating temperature with a heat flux of 1250 W/m, applied to the concrete 

specimen.  After the heating process was completed, the experiment followed a two-

hour cooling process.  Figure 3.4 shows two of the thermograms corresponding to the 

concrete specimen with a heating duration of 900 seconds.  The two thermogram 

images of the concrete specimen also have different cooling durations from which the 

surface temperatures were recorded.  In Figure 3.4, the thermogram on the left 

represents the specimen at 485 seconds after the end of the heating phase and the 

thermogram on the right represents 2445 seconds after the end of the heating phase.  
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The defects are identified by a temperature contrast on the surface over the areas of the 

defects as shown in the Figure 3.4.  The image on the left has a noticeably good 

temperature contrast color on the surface, meaning it is most likely a near-surface 

defect.  However, unlike shallow defects, the deeper defects are not clearly visible at 

shorter cooling times.  The image on the right is a concrete specimen with a longer 

cooling duration of 2445 seconds.  The image with the longer cooling duration allows 

one to see the deeper defects within the concrete subsurface more clearly on the 

thermogram images.  Based on the two images shown on Figure 3.4, it can be deduced 

that a longer cooling period allows deeper defects to be seen more clearly in 

thermographic images.  This phenomenon is discussed in later sections of this report. 

 

The results of the experiments were evaluated by graphing surface temperature versus 

time over a reference point and directly over the center of a designated defect (shown in 

Figure 3.4).  The temperature difference between both graphs were then created and 

graphed as the change in surface temperature versus time; showing the maximum 

temperature difference (TmaxΔ) in respect to time (tmaxΔ) of its occurrence.  The graphical 

representations of the results are shown Figure 3.5 for Defect 2 and Figure 3.6 for 

Defect 5.  Figure 3.5 illustrates the BAM test results using three graphs, Defect 2 

temperature vs. time curve; reference point 1 temperature vs. time curve; and, the 

corresponding difference between Defect 2 and reference point 1 temperature vs. time 

curve.  Likewise, Figure 3.6 illustrates Defect 5 temperature vs. time curve, reference 

point 5 temperature vs. time curve, and the corresponding difference between Defect 5 

and reference point 5 temperature vs. time curve.  Figure 3.5 and Figure 3.6 show the 

surface temperatures at the left side of the graph and a surface temperature difference 

scale between the defect and reference point, at the right side of the graph. 
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3.4 CAUSE OF SURFACE TEMPERATURE CHANGE  

The basic concept of how surface anomalies occur during impulse thermography starts 

when the external heating source creates a change in temperature on the surface of the 

specimen.  The change of temperature excites the intermolecular particles of the 

material creating thermal energy in the form of radiation, which propagates to the 

surface of the specimen.  The process of heat transfer in and out of the specimen is 

caused by thermal conduction, convection and radiation.  Thermal diffusivity is a 

property that measures the thermal inertia or a substance ability to allow heat to move 

through it, contributing to the time factor of which heat is transferred throughout the 

specimen.  During the cooling process, thermal energy is released through radiation, 

convection and conduction at a rate defined by the materials thermal diffusivity and other 

thermal properties.  Thermal diffusivity is mathematically defined by the equation shown 

below: 

 

ߙ ൌ
݇

ܿߩ
 

 

 

Where ߙ is the thermal diffusivity, ݇ is the thermal conductivity, ߩ is the density and ܿ is 

the specific heat capacity. 

 

During the heating phase, the presence of a subsurface defect and/or abnormality can 

reduce or increase the diffusion rate.  This could cause the surface temperature near or 

over the subsurface defect and/or abnormalities to emerge as an area of higher or lower 

temperature with respect to the surrounding areas.  Consequently, the change in the 

diffusion rate causes an accumulation of heat, and creates a higher surface temperature 
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above the subsurface defect.  Moreover, this phenomenon occurs later for deeper 

defects and with a much more diluted thermal contrast on the surface. 

 

3.5 BAM TEST RESULTS 

The results of the BAM test are shown in Table 3.2.  The results are displayed by the 

maximum temperature difference at a given time for six different heating times and eight 

different defects.  The maximum temperature difference shown on the table is the 

recorded difference between the defect’s maximum temperature and the corresponding 

reference point maximum temperature (i.e. Defect 2 vs. reference point 2).  The 

experimental results shows several consistencies with the varying heating times and 

defect depths.  If the eight defects are classified into two subgroups, one being the larger 

size defects of 20 cm x 20 cm x 10 cm (Defects 1-4) and the other four defects with the 

dimensions of 10 cm x 10 cm x 10 cm (Defects 5-8), we can then easily compare the 

results of each group; only comparing the impact on the depths of the defects within 

each subgroup.  

 

 As anticipated, both subgroups showed the maximum temperature difference 

decreasing with the increasing depth of the defect.  Similarly, the occurrence of the 

maximum temperature at a given time increases along with the increasing heating times 

of the experiment.  The defects in this experiment were filled with polystyrene blocks, 

which is a material with a significantly lower thermal diffusivity and thermal mass in 

comparison to concrete.  This decrease of thermal mass and diffusivity causes the 

polystyrene defects to absorb and release thermal energy at a quicker rate than the 

surrounding concrete material, causing an increase in temperature within the area of the 

defect.   In effect, heat accumulation within the area of the polystyrene can be seen on 
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the surface during the infrared thermography test.  The experimental results show a 

large heat accumulation on the concrete surface over the regions of the defects during 

the heating and cooling process as expected.  

 

The larger defects (Defect 1, Defect 2, Defect 3 and Defect 4) in comparison to the 

smaller defects (Defects 5, Defect 6, Defect 7 and Defect 8) at coinciding depths (such 

as Defect 4 and Defect 5 both located at a depth of 8 cm) should have a larger surface 

temperature change.  This is expected due to the increase of the defect’s area, which 

has a much lower thermal mass than the surrounding concrete material.  The decreases 

in surface temperature change with respect to the increase of the depth of the defects 

are also due to the increase of thermal mass as you approach the lower depths of the 

deeper defects.  The results obtained from the experiment remained constant throughout 

all of the results apart from Defect 7, which did not follow the common characteristics of 

the other seven defects.  Defect 7 had an unusually high surface temperature, which 

suggests that experimental or human error may have been present in the results for this 

defect. 

 

3.6 IMPULSE THERMOGRAPHY EXPERIMENT FINITE ELEMENT 

MODEL 

The finite element model created to simulate the BAM test defects followed the finite 

element approached discussed in Chapter 2.  The concrete block contained eight 

defects all filled with polystyrene blocks.  The model was created using 3-dimensional 

parts with identical dimensions and material properties as shown in Figure 3.7, Figure 

3.8 and Figure 3.9.  The polystyrene parts are placed into the defects inside of the 

concrete part and the surfaces of both parts are then connected together through a tie 
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constraint.  This allows the thermal energy to distribute through the concrete and the 

polystyrene parts as one entire body, but with different thermal properties.  In order to 

create different defect depths in the concrete block, several layers on the top of the 

concrete block was created as separate parts, and were later tied back to the concrete 

specimen once the polystyrene blocks were placed into the different depths of the 

defects .   

 

There were three analytical steps performed in this analysis: step one was the initial 

conditions; step two was the heating phase; and step three was the cooling phase of the 

analysis.  During the first step, a time duration of zero was selected and an initial 

ambient temperature of 20 0C was defined for the concrete specimen and its 

surrounding.  At the second phase, a surface heat flux (q) was applied to the top surface 

of the concrete specimen in the z-direction for the specified heating duration.  There was 

one heating duration of 900 seconds.  The applied thermal heat flux was uniformly 

distributed with an instantaneous and constant load of 1250 Js-1m-2, shown in Figure 

3.10.  The thermal heat flux simulates the radiators used in the experiment, which was 

used as the heating source.  Also introduced in this phase are two thermal surface 

interactions.  The surface interactions created were radiation and convection.  These 

surface interactions mainly acted as boundary conditions from which thermal energy is 

absorbed and released from.  The thermal interactions during this step were only applied 

to the bottom of the concrete specimen (opposite and parallel to the surface of where the 

heat flux is being applied).  The surface interactions were not applied to the top surface 

where the surface heat flux was applied because Abaqus automatically applies thermal 

convection and radiation to a surface where the thermal heat flux is being applied.  The 

sides of the concrete block are modeled as adiabatic boundary conditions, in order to 

simplify the heat transfer model.  The defects are located at a considerable distance 
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from the block edges, so heat losses from the sides and corners of the specimen do not 

influence the surface temperature at the locations of the defects.  The final step in the 

analysis was the cooling phase.  In this step the surface heat flux is deactivated and the 

same surface interactions continue to propagate.  Due to the deactivation of the heat flux 

on the top surface of the concrete specimen, the thermal radiation and convection 

surface interactions are then applied to the top surface of the concrete, with identical 

thermal parameters as the bottom surface interactions. 

 

3.7 FINITE ELEMENT MODEL CONVERGENCE STUDIES 

This section discusses the convergence studies conducted for the finite element model 

created in Abaqus.  Both h-and p-convergence studies were performed.  These two 

methods are shown in Figure 3.11.  Both methods are used to improve the accuracy of 

the solutions obtained in the analysis.  The objective for this convergence study is to 

refine the mesh to obtain the necessary accuracy by using only the required amount of 

degrees of freedoms.  The h-convergence pertains to the geometric discretization and 

the elements basic shape function.  While the p-convergence refers to polynomial 

equation used to determine the certain degree of accuracy required by the user.  Both 

convergence studies were done by altering the characteristic of the element sizes, 

shapes and the amount of nodes defined in each element.  The characteristics of the 

convergence study parameters were selected based on the concrete specimen’s 

relatively large thickness in comparison to the depth of the temperature gradient 

penetrating through the concrete during the analysis.  A finer mesh is necessary in order 

to ensure that the temperature distribution and gradient is similar to the experimental 

temperature diffusion through the concrete block; this could only be done by comparing 
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the surface temperature of the model and experiment, until reasonable values were 

obtained.  

 

3.7.1 Parameters 

For the h-convergence study, Figure 3.12 is a display of the meshes used for the 

concrete specimen.  There were three different size meshes used for the convergence 

study. The three sizes were categorized as intermediate mesh (Mesh 1), a coarse mesh 

(Mesh 2) and a very fine mesh (Mesh 3).  The meshes were generated by increasing or 

decreasing the number of elements throughout the concrete specimen, with Mesh 2 

containing the least amount of elements and Mesh 3 containing the largest number of 

elements.   

 

Figure 3.13 illustrates the two different types of elements used in the  p-convergence 

study.  The 8 node linear heat transfer element shown on the left in Figure 3.13 is a first 

order element, with a temperature variation that is algebraically defined as a linear 

equation over the elements nodes.  The other element used in this study was a 20-node 

quadratic heat transfer element shown on the right in Figure 3.13.  The 20-node 

quadratic heat transfer element is a second order element in which the temperature can 

vary parabolically between the element nodes.  

 

The polystyrene foam parts shown in Figure 3.9 were meshed using one geometric and 

nodal element size since the parts were extremely small in comparison to the entire 

concrete model.  Using a finer mesh would have increased the duration of the running 

time of the finite element model, and would still not have an impact on the temperature 
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gradient through the parts due to their small size in comparison to the entire concrete 

specimen.  Table 3.4 summarizes the parameters discussed in the previous section.   

 

3.7.2 Results of convergence study 

Figure 3.14 shows the temperature vs. time relationship at the surface of the specimen 

exposed to the external heating source for an 8-node linear heat transfer element.  This 

is shown on the plot for Mesh 1, Mesh 2, and Mesh 3. 

 

Likewise, Figure 3.15 shows the temperature vs. time relationship at the surface of the 

specimen exposed to an external heating source for a 20-node quadratic heat transfer 

element. 

 

Figure 3.16 contains the graphs of all of the measured temperature vs. time curves for 

both the linear and quadratic nodal elements.   

 

The results graphed for the 8-node linear elements are shown in Figure 3.14.  The figure 

shows a maximum surface temperature difference of approximately 5 0C.  The finer 

mesh (M3-1) reflects a higher temperature on the surface of the concrete specimen, 

when compared to the more coarse mesh. This increase in surface temperature when 

analyzing the finer mesh corresponds to the capability of the temperature distribution 

from the external heating source to penetrate and diffuse through the elements more 

effectively.  

 

The results graphed for the 20-node quadratic elements, shown in Figure 3.15, shows a 

small difference in temperature in the three different meshes graphed.  The maximum 
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temperature difference between the three meshes was approximately 2 0C, occurring at 

the end of the analysis.  This shows that the h-convergence parameter does not have a 

significant impact on the results obtained in the finite element model (FEM), when a 

higher degree polynomial convergence parameter is used. 

 

Figure 3.16 contains all of the graphs created in this convergence study in order to get a 

better understanding of how all of the h-convergence and p-convergence parameters 

affect the finite element model results.  In Figure 3.16 the graphs M2-1, M1-1 and M1-2 

all show a variance in the temperature versus time curves in comparison to the relatively 

consistent graphs M2-2, M3-1, and M3-2.  This discrepancy in temperature is mainly 

shown where the h-convergence parameter (meshing) is a coarse larger element sizes.  

This is also true to the linear p-convergence parameter, where a finer mesh size is not 

used to over confiscate the less accurate linear analysis method.   

 

The convergence study performed showed a convergence in the surface temperature as 

the gradual increase in a more precise method of solutions was used in the model.  

Therefore to obtain the most accurate results from the model, a 20 node quadratic heat 

transfer brick (DC3D20) element was used.  The element size and meshing used to 

model the concrete specimen was similar to that of M3-2.  

 

3.8 BAM MODEL RESULTS AND CONCLUSION 

The results of the BAM model were graphed for each of the defects, using a temperature 

versus time plot.  The heating duration used in this analysis was 900 seconds and the 

measured temperatures were taken at the surface directly above the center of each 

defect.  Each figure contains three graphs, the temperature of the surface above the 
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defect, the designated reference point surface temperature, and the difference in 

temperature of the defect and reference point.   

 

The results of the finite element model analysis are graphed on Figure 3.17 through 

Figure 3.24, corresponding to Defects 1 through Defect 8, respectively.  The finite 

element results have been graphed for each defect, showing the temperature versus 

time curve in respect to 900 seconds of heating time.  In each graph, the designated 

reference point (corresponding to each defect) is also graphed along with the difference 

curve, which shows the change in temperature on the surface of the specimen over the 

defect.  The figures show the surface temperature of the specimen on the left side of the 

graph, and on the right side is the temperature difference between the defect and 

reference point.  

 

Table 3.3 shows the results of the impulse thermography finite element model and the 

experimental results of the BAM test.  The results shown consist of the maximum 

temperature change after the heating phase of the experiment (900 seconds heating 

duration) and the time at which the maximum change in surface temperature occurred 

(difference between the reference point temperature and defect temperature).   

 

Comparing the values of the temperature change from the BAM test and finite element 

analysis Defect 1, Defect 2 and Defect 3 (which are three deepest larger defects), the 

data shows a very similar temperature changes and time occurrence of their maximum 

temperature change.   

 

Defect 4 and Defect 5 are the defects closest to the surface of the concrete.  Comparing 

the experimental and analysis results for these defects, the BAM model results yield a 
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much higher surface temperature change occurring at an earlier time after the heating 

phase ends.   

 

Defects 6, 7 and 8 are the deepest and smaller sized defects.  The results show that 

these defects have a higher surface temperature change in the BAM test in comparison 

to the finite element model results.  The BAM test results also have shorter time duration 

to reach the maximum temperature change for Defect 6, Defect 7 and Defect 8.  Figure 

3.17 through Figure 3.24 show that, for the deeper defects at 60 mm and 80 mm, there 

is little difference between the surface temperatures over the defects and the reference 

surface temperature.  This is the case for the defects at 60 mm (Defect 2 and Defect 7) 

and the defects at 80 mm (Defect 1 and 8).  This result from the finite element analysis 

does appear to have error.  For example, the experimental results for Defect 5 shown in 

Figure 3.6 reveal a difference in the surface temperature over the defect and the 

reference surface temperature, throughout the experiment (compared to the BAM model 

results shown in Figure 3.21).  

 

Based on the results shown on Table 3.3, the data obtained from the finite element 

model can be perceived to have some discrepancy in the maximum temperature change 

and time of occurrence for five of the different defects.   

 

However, the important aspect from the data shown on Table 3.3 is the analogous 

behavior between both the model and the experiment data recorded.  When 

investigating the defects maximum temperatures in both analyses, the defects closest to 

the surface yield the larger change in temperature and the shortest time at which the 

maximum temperature difference occurred.  Also noted, as the depth of the defect 

increased, both cases show the same relative change in maximum temperature 
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difference variation.  This consistency of the model and experimental results can be 

observed for the change in the defect size and location.  This shows that the model and 

experimental results both coincide with one another. 
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Table 3.1: Specifications and details of ThermaCAM SC1000 infrared camera 

(Wiggenhauser, Hille and Cziesieki 2004) 
Spectral 3.4 to 5.0 microns 
Temperature Range -10 To +450 ° C 
Temperature resolution .07 K at 30 ° C. 
Accuracy ± 2% and 2 K 
Frame rate 50 Hz (PAL) Full Screen 
Dynamic range for each 
measurement point 12-bit 

Spatial resolution (IFOV) 1.2 mrad 
Field of view with standard lens 17 ° x 16 ° 

 
 

Table 3.2:  Representation of the recorded temperature difference between the 
reference point surface temperature and defect surface temperature from the BAM 

experiment (Wiggenhauser, Hille and Cziesieki 2004) 
Heating 
Duration 300s 600s 900s 

Defect 
ΔTmax(K) tΔTmax(sec) ΔTmax(K) tΔTmax(sec) ΔTmax(K) tΔTmax(sec)

1 0.2 3860 0.7 3700 0.7 3125
2 0.4 2835 0.9 2645 1.5 2445
3 0.8 1945 1.7 1545 2.3 1485
4 1.7 1135 3.5 1055 4.7 940
5 1.4 600 2.7 525 3.5 485
6 1.2 735 2.1 600 3.0 585
7 2.2 385 4.0 290 5.5 280
8 1.0 885 1.8 765 2.6 605

Heating 
Duration  1800s 2700s 3600s 

Defect 
ΔTmax(K) tΔTmax(sec) ΔTmax(K) tΔTmax(sec) ΔTmax(K) tΔTmax(sec)

1 1.4 2915 2.0 2630 2.4 2570
2 2.6 2100 3.5 2045 4.3 1575
3 3.7 1375 5.4 1290 6.0 1175
4 8.4 655 - - - - 
5 5.4 325 6.6 300 7.3 285
6 4.8 390 6.1 330 6.9 295
7 8.5 160 - - - - 
8 4.1 515 5.8 370 6.4 350
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Table 3.3: Defects maximum surface temperatures differences for the BAM experiment 

and BAM finite element model 

Defect 
BAM 

EXPERIMENT   
ΔTmax(K) 

BAM 
MODEL   
ΔTmax(K) 

BAM 
EXPERIMENT   

tΔTmax(sec) 

BAM 
MODEL    

tΔTmax(sec) 
1 0.7 0.68 3125 3300 
2 1.5 1.37 2445 2420 
3 2.3 3.2 1485 1320 
4 4.7 9.6 940 330 
5 3.5 6.8 485 220 
6 3 1.6 585 880 
7 5.5 0.55 280 1760 
8 2.6 0.23 605 2860 
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Figure 3.1: Dimensions and defect identification numbers of the concrete specimen 
used in the BAM experiment and finite element model (drawing not to scale) 
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Figure 3.2: Experimental Setup of BAM experiment, including the concrete block 
specimen, the radiator, the infrared thermography camera and the computer unit 

(Wiggenhauser, Hille and Cziesieki 2004) 
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Figure 3.3: Elevation view of concrete specimen FEM model, with the corresponding 

reference points and defect location 
 
 
 
 
 

Defect Reading 
(Typical) 

Reference point 
(Typical) 
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Figure 3.4: Thermogram images of concrete specimen during the cooling phase at 485 
seconds (left) and 2445 seconds (right) after heating the concrete specimen for duration 

of 900 seconds (Wiggenhauser, Hille and Cziesieki 2004) 
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Figure 3.5: BAM test results for Defect 2 and reference point 1, temperature vs. time 
curve (Wiggenhauser, Hille and Cziesieki 2004) 

 
 

 
 
Figure 3.6: BAM test results for Defect 5 and reference point 5, the temperature 

vs. time curve (Wiggenhauser, Hille and Cziesieki 2004) 
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Figure 3.7: Finite element model of the concrete specimen as a 3 Dimensional part 
 
 

 
 

Figure 3.8: Finite element model of the concrete specimen showing the top 3 cm of the 
concrete remove to view of the defects 
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Figure 3.9: Finite element model of polystyrene blocks (defects within the concrete 
specimen filled into the defects) 

 

 
 

Figure 3.10: Applied thermal heat flux uniformly distributed at 1250 Js-1m-2 on the 
surface of the concrete specimen 
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Figure 3.11: Refinement of finite element mesh using h-convergence and p-
convergence method 

 
 
 
 
 

 
               Mesh 1                                             Mesh 2                                       Mesh 3 
 
Figure 3.12: The h-convergence studies for the concrete finite element model, with the 

three different mesh sizes 
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Figure 3.13: Representations of the two types of p-convergence methods used in this 
study.  The 8 node linear heat transfer element shown on the left and the 20-node 

quadratic heat transfer element shown on the right. 
 
 
 
Table 3.4: Convergence study analysis matrix for the concrete specimen finite element 

analysis. 

Designation  Mesh Element Type 

M1-1 Mesh 1 8-node linear element 

M2-1 Mesh 2 8-node linear element 

M3-1 Mesh 3 8-node linear element 

M1-2 Mesh 1 20-node quadratic element 

M2-2 Mesh 2 20-node quadratic element 

M3-2 Mesh 3 20-node quadratic element 
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Figure 3.14: Convergence study results for the surface temperature of concrete 
specimen during the finite element analysis, using 8-node linear elements 

 

 
 

Figure 3.15: Convergence study results for the surface temperature of concrete 
specimen during the finite element analysis, using 20-node linear elements 
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Figure 3.18: Defect 2 surface temperature versus time FEM results 
 

 
 

Figure 3.19: Defect 3 surface temperature versus time FEM results 
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Figure 3.20: Defect 4 surface temperature versus time FEM results 
 

 
 

Figure 3.21: Defect 5 surface temperature versus time FEM results 
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Figure 3.22: Defect 6 surface temperature versus time FEM results 
 

 
 

Figure 3.23: Defect 7 surface temperature versus time FEM results. 
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Figure 3.24: Defect 8 surface temperature versus time FEM results. 
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CHAPTER 4 
 INTRODUCTION TO SCC WALL THERMOGRAPHY STUDY 

 
 

4.1 INTRODUCTION 

This chapter is an introduction to the SCC wall study, which involves infrared 

thermography as a method to detect defects within the composite structure subsurface.  

The sections below discuss the construction of the SCC wall, the modeled SCC wall 

created in Abaqus, the modeling analysis and procedure, and the convergence study 

performed.   

4.2 SCC WALL CONSTRUCTION 

An alternative structure to reinforced concrete floors, wall and other structural 

components used in a nuclear power plant is the Steel Concrete Composite structure.  In 

this study our interest is focused on the SCC wall, which is a reactor containment 

structure constructed by placing concrete between two steel plates that form the 

concrete and provide the permanent exterior face of the structure (Shown in Figure 4.1).  

Welded in the inner surface of the two steel plates are shear studs, which are embedded 

into the concrete once the concrete is poured between the two plates.   The studs are 

embedded into the concrete to tie the concrete and steel plates together.  The studs are 

also used to connect the two steel plates together during modular construction are tie 

bars, which are welded to both steel plates connecting the plates together throughout 

the wall (shown in Figure 4.2).  
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4.3 SCC WALL MODEL  

The basic structural components of the model consist of two half inch thick steel plates 

and a concrete interior.  The model did not include any steel reinforcements because 

they were not necessary in the thermography analysis performed.  The subcomponent of 

the SCC wall (a section of the SCC wall) was created in the model with the dimensions 

of 1.5 m x 0.75 m x 0.8 m as shown in Figure 4.2 and Figure 4.3.  The concrete 

component that lies between the two steel plates has a thickness of .7875 meters.  The 

SCC wall model only has the top steel plate modeled since the bottom steel plate would 

have no significant effect on the thermal analysis results. 

 

As the BAM model discussed previously, the concrete and steel parts were bonded 

together using tie constraints.  Figure 4.3 is an image of the concrete and steel parts 

bonded together in the Abaqus model.  The defect within the concrete was modeled as 

10 cm3 empty void.  The defect was modeled with a cavity radiation on the interior 

surfaces of the concrete-air interaction of the void.  The cavity radiation captures the 

thermal radiation that occurs due to the temperature difference inside the concrete 

defects.  In this model, the defect was located at the center of the SCC wall model and 

was placed at depths specified later the report.    

 

4.4 ANALYSIS PROCEDURE OF SCC WALL MODEL 

There were three analytical steps preformed in each analysis: initial condition, heating 

phase and the cooling phase.  The procedure of this finite element analysis was 

performed with the identical procedure previously discussed in the BAM model in 

Chapter 3.  In the model, an ambient temperature of 20 0C was defined for the concrete 

and steel specimen.  On the second analysis step, a uniform surface heat flux (q) was 



www.manaraa.com

55 
 

applied to the top surface of the steel in the z axis of orientation for a time period and 

heat flux specified in the next chapter.  During the heating phase, three thermal surface 

interactions (boundary conditions) were applied.  The bottom surface of the SCC wall 

has a surface radiation interaction with an emissivity value of 0.8.  Also applied to the 

bottom surface of the specimen was a surface film condition (thermal convection) with a 

film coefficient of 6.5 W/m2.  The third thermal interaction used in this step of the analysis 

was the cavity radiation applied to the inside surface surrounding the air void within the 

concrete part.  As described before, this cavity radiation helps model the accumulation of 

heat within the void area embedded inside the concrete steel specimen.  During the 

cooling phase, the same surface interactions continue to propagate, with an additional 

surface radiation and film condition applied to the top of the steel specimen using the 

same coefficient values.  The sides and edges of the concrete specimen were modeled 

as adiabatic boundary conditions. 

 

 

4.5 CONVERGENCE STUDY OF SCC WALL MODEL 

Similar to the convergence study performed in the previous chapter, an h-convergence 

and p-convergence study was completed for the SCC wall model.   

 

Table 4.1 summarizes the convergence studies performed for the SCC wall model.  The 

convergence study consisted of three different types of meshes and two different types 

of nodal elements.  Figure 4.4 shows the meshes used for the h-convergence study.   

Three meshes were used for this convergence study; which were a coarse mesh (Mesh 

1), a fine mesh (Mesh 3) and an average of the two meshes (Mesh 2).  Also the p-
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convergence study was also conducted using an 8 node linear heat transfer element and 

a 20-node quadratic heat transfer element. 

 

Figure 4.5 shows the temperature vs. time relationship at the surface of the steel plate 

exposed to a constant heat source of 1250 W/m2.  The graph in Figure 4.5 corresponds 

to the 8-node linear heat transfer element plotted for Mesh 1, Mesh 2, and Mesh 3. 

 

Likewise, Figure 4.6 shows the temperature vs. time relationship at the surface of the 

steel plate for the 20-node quadratic heat transfer element corresponding to Mesh 1, 

Mesh 2, and Mesh 3.     

 

Figure 4.7 is the temperature vs. time results for both the linear and quadratic nodal 

elements corresponding to all three meshes.    

 

The results graphed for the 8-node linear elements shown in Figure 4.5 shows a large 

difference in temperature for each of the three Meshes.  Mesh 2 has the highest 

temperature at approximately 90 0C, Mesh 1 at 77 0C and Mesh 3 at 52 0C.  With a 

maximum difference of 38 0C, the results from the 8-node linear heat transfer prove that 

the element’s geometric discretization has a large impact on the accuracy of the results 

obtained from the model.  The 20-node quadratic elements shown in Figure 4.6 shows 

that Mesh 1 and Mesh 2 both have similar surface temperatures versus time curves, but 

Mesh 3 has a temperature difference of about 38 0C. 

 

Figure 4.7 is a representation of all of the graphs produced in this convergence study.  

By combining all of the graphs into one figure, it can be seen that the most dominant 

factor in the accuracy of the results are based upon the geometric discretization or the 
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meshing of the model.    For example, Mesh 3 linear and quadratic heat transfer 

elements both obtain almost identical results, while Mesh 2 and Mesh 1 linear and 

quadratic elements are dissimilar.  The difference in temperatures of the linear and 

quadratic Mesh 2 and Mesh 1 is due to several reasons, such as the non-geometrically 

aligned elements (caused by the void within the concrete specimen).  In this experiment, 

Mesh 3 has smaller element arrangement that allows it aligned to the model’s 

geometrical shape (such as the air void in the middle of the specimen, which can create 

a misalignment of nodes).  The difference in temperature can also be influenced by the 

degree of the polynomial equation used to solve the finite element analysis. 

Furthermore, with two different materials being used in this model (steel and concrete), 

the heat transfer from the steel portion of the specimen to the concrete may require a 

finer element to allow the temperature gradient to diffuse through the steel-concrete 

model. 

 

The convergence study performed showed a convergence in the surface temperature as 

the gradual increase in a more precise method of solutions was used in the model.  

Therefore in the SCC wall model, a 20 node quadratic heat transfer brick (DC3D20) 

element similar to M3-1was used to obtain the most accurate results from the model.  
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Figure 4.1:  Steel Concrete Composite wall structure under construction phase 
(International Atomic Energy Agency) 

 

 
 
Figure 4.2: Internal arrangement of a typical Steel-Plate Concrete Composite Structure, 

also known as a Steel Concrete Composite Structure (U.S. Department of Energy) 
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Figure 4.3: Finite element model of SCC wall substructure. 
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      Mesh 1              Mesh 2           Mesh 3 
 

Figure 4.4: The images above represents the h-convergence studies for the concrete 
model with the different mesh sizes. 

 
 
 

Table 4.1: Convergence study analysis matrix for Steel-Concrete Composite wall 
specimen 

 

Designation Mesh Element Type 

M1-1 Mesh 1 8-node linear element 

M2-1 Mesh 2 8-node linear element 

M3-1 Mesh 3 8-node linear element 

M1-2 Mesh 1 20-node quadratic element 

M2-2 Mesh 2 20-node quadratic element 

M3-2 Mesh 3 20-node quadratic element 
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CHAPTER 5  
ANALYSIS RESULTS 

 
 

5.1 INTRODUCTION 

This chapter presents the results of the SCC wall analyses.  The study performed 

consisted of seven parametric cases each influencing the results obtained in the model.  

In this chapter, the result for each parametric case is investigated to evaluate its 

influence on the temperature versus time curve and thus reveal the suitability of 

thermography as an NDT method for flaw detection. 

 

5.2 ANALYSIS MATRIX 

The analysis matrix consists of the seven different cases shown on Table 5.1.  The three 

parameters treated in the analyses were the depth of the void (D), the heat flux applied 

to the SCC wall (q), and the time duration (th) for which the heat flux was applied.  The 

depth of the void is defined from the top of the steel surface to the top of the defect’s 

surface as shown in Figure 5.1, which is a typical section of the SCC wall modeled in 

Abaqus.  The three parameters mentioned above all have a direct influence on the 

results of the detection of abnormalities within the specimen.  Although many other 

factors may influence the detection of abnormalities, the three parameters selected are 

often encountered in realistic applications of thermography as a form of NDT.   

 

 

 

 

 



www.manaraa.com

64 
 

 
Table 5.1: Analysis Matrix 

 

Case 
Flaw Depth, D             

(meter)  
Heat Flux, q       

(Js-1m-2) 
Heating Duration, 

th (seconds) 
0.0125 0.0375 0.0875 625 1250 900 3600 

1 X X X 
2 X X X 
3 X X X 
4 X X X 
5 X X X 
6 X X X 
7 X X X 

 
 

5.3 CASE 1 

Analysis Case 1 is defined as shown on Table 5.1.  In Case 1, the defect was modeled 

in Abaqus as a 0.1 m3 cube.  In Case 1, the defect’s depth was defined at .0125 meters.  

Also for Case 1, the thermal surface heat flux (q) and time duration of the heat flux (th) 

were 1250 JT-1L-2 and 3600 seconds respectively.  Figure 5.1 shows the locations of 

where the surface temperatures during the analysis were recorded on the specimen.  

The result of the maximum temperature occurrence on the surface of the specimen in 

respect to time was graphed on Figure 5.2.  The maximum temperature occurrence for 

all cases were located at the center of the void, which are shown later in this chapter.   

 

Figure 5.2 shows an increasing surface temperature directly above the void, while a 

constant heat flux is applied to the specimen until the end of the heating phase at 3600 

seconds.  The maximum temperature occurred at the end of the heating phase and was 

computed as approximately 93 0C.  During the cooling phase, the surface temperature 

initially decreased rapidly towards the ambient temperature.  The rate of cooling was 

somewhat greater than the rate of heating.   
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Figure 5.3 shows the difference in surface temperature over the void as compared to a 

reference point on the specimen’s surface.  The reference point’s temperature was 

designated as a surface temperature at a distance from which it is not affected by the 

defect, giving the specimen’s normal undisturbed temperature as shown in Figure 5.1.  It 

can be seen that the maximum temperature difference occurs at the ending of the 

heating phase and is measured at approximately 35 0C.  This change of temperature is 

significant when performing infrared thermography, in order to detect defects within the 

specimen.  High maximum temperature differences allow defects to be easily seen 

during the infrared thermography evaluation.  

 

Figure 5.4 is a plot of Case 1 surface temperature versus the specimen’s surface 

position in the y-axis.  The surface temperature reading for this graph was taken at a 

series of points going across the specimen from the center of the defect, to 0.3 meters at 

both ends in the y-axis.  The graph shows how the temperature distribution across the 

width of the specimen is affected by the defect.  Six different specified times (in 900 

second intervals) during the analysis were graphed in order to provide an overall 

depiction of how the temperature varies across the width of the specimen.  Figure 5.4 

plots are each symmetric, with a maximum temperature occurring at the center of the 

specimen directly over the void.  The width of the defect is positioned on the graph at the 

location of 0.1 meters to 0.2 meters, which a drastic increase in the temperature can 

been seen.  The maximum temperature recorded occurred at the end of the heating 

phase, (3600 seconds) at 93 0C.  As expected, with the increase of time, the surface 

temperature also increased.  The times corresponding to the cooling phase in this figure 

shows a significant drop in surface temperature; such that, the last two times of 6300 

and 6600 seconds begin to concave over the defects .  The small concavity over the 
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defect shows that the thermal energy over the area of the defect allows the temperature 

to dissipate from the specimen at a more rapid rate compared to the undisturbed 

surfaces of the specimen.  

 

Figure 5.5 shows the difference in temperature in the y-axis of orientation, which gives a 

better perspective of the change in temperature in respect to an undisturbed reference 

point on the specimen’s surface. Similar to Figure 5.4, the maximum difference in 

temperature can be seen in the graph, and more importantly the change in temperature 

at a specified position on the specimen can also be observed on the graph.  

Subsequently, it can be seen that a large temperature change near and over the defect 

can been detected starting at 900 seconds of the heating.  
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Figure 5.1: Elevation view of SCC wall section with the corresponding reference point 
location 
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Figure 5.2: Results of Case 1 Temperature vs. Time curve for the SCC Wall 
 

 
 

Figure 5.3: Results of Case 1, difference in Temperature vs. Time.  The difference in 
temperature was calculated by the surface temperature difference between the defect 

and designated reference point 
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Figure 5.4: Case 1 surface temperatures versus the specimen’s surface position in the 

y-axis, for the given heating and cooling durations 
 

 
 

Figure 5.5: Case 1 difference in surface temperatures versus the specimen’s surface 
position in the y-axis, for the given heating and cooling durations 
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5.4 CASE 2 

Analysis Case 2 consisted of the same SCC wall model as Case 1, but with a change in 

depth of the defect to .0375 meters.  Similar to Case 1, the thermal surface heat flux (q) 

and time duration of the heat flux (th) were 1250 JT-1L-2 and 3600 seconds respectively.  

The results of the maximum temperature occurrence on the surface of the specimen in 

respect to time are graphed in Figure 5.7.  Figure 5.7 shows a similar increasing rate of 

surface temperature over the defect, to a maximum temperature of 65 0C.  The 

maximum surface temperature occurs at the ending of the heating phase at 3600 

seconds; then after, entering the cooling phase where the surface temperature has a 

gradual decrease towards the ambient temperature.  The rate of change in the increase 

and decrease of the surface temperature are relatively similar to one another, showing 

that the rate of heating and cooling during this process are similar. 

 

Figure 5.8 is a graph of the difference in surface temperature over the defect as 

compared to a reference point on the specimen’s surface (Figure 5.1).  The graph shows 

that the maximum temperatures difference between the surface over the defect and the 

surface of an unaffected area of the specimen is approximately 7.7 0C.  It can be argued 

that the detection of the defect at the depth of .0375 meters is possible based on this 

temperature change, but the graph shows that there is a much smaller time duration 

from which the defect can be detected due to the decrease in the maximum difference in 

surface temperature in this case.  

 

Figure 5.9 is a plot of Case 2 surface temperature versus the specimen’s surface 

orientation in the y-axis (shown in Figure 5.6). Six different specified times (in 900 

seconds intervals) during the analysis were graphed in order to get an overall depiction 
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of how the temperature varies across the width of the specimen.  The maximum 

temperature occurring at the center of the specimen directly over the defect was 

recorded at 65 0C.  The distance between the defects , 0.1 meters to 0.2 meters, showed 

a small increase in surface temperature change during the analysis.  At the initial 

temperature recording (900 seconds) and the last temperature recordings (5400, 6300 

and 6600 seconds) only a small temperature change from the surface over the void and 

the reference point of the specimen is shown on the graph.  The remaining times show 

the temperature change between the surface over the void and the unaffected surface is 

much more noticeable.  

 

Figure 5.10 is the difference in surface temperature in the y-axis of orientation.  This 

graph gives a better representation of the change in temperature with respect to an 

undisturbed reference point on the specimen’s surface.  Similar to Figure 5.8, the 

maximum difference in temperature can be seen in the graph, and more importantly the 

difference in temperature at a specified position on the specimen can also be observed 

on the graph.  It can also be seen that the recorded time of 3600, 4500, 2700 and 5400 

seconds, the surface temperature change is still over 5 0C.   
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Figure 5.7:  Results of Case 2 Temperature vs. Time curve for the SCC Wall 
 
 

 
 

Figure 5.8: Results of Case 2, difference in Temperature vs. Time.  The difference in 
temperature was calculated by the surface temperature difference between the defect 

and designated reference point 
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Figure 5.9: Case 2 surface temperatures versus the specimen’s surface position in the 

y-axis, for the given heating and cooling durations 
 
 

 
 

Figure 5.10: Case 2 difference in surface temperatures versus the specimen’s surface 
position in the y-axis, for the given heating and cooling durations 
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5.5 CASE 3 

Analysis Case 3 consisted of the same SCC wall model as Case 1, but with a change in 

the depth of the defect to .0875 meters.  Similar to Case 1, the thermal surface heat flux 

(q) and time duration of the heat flux (th) were 1250 JT-1L-2 and 3600 seconds 

respectively.  The results of the surface temperatures in respect to time are graphed in 

Figure 5.11.  Figure 5.11 shows a maximum surface temperature of 58 0C.  The 

maximum surface temperature occurs at the ending of the heating phase at 3600 

seconds; then after, entering the cooling phase where the surface temperature has a 

gradual decrease towards the ambient temperature.     

 

Figure 5.12 is a graph of the difference in surface temperature over the void as 

compared to a reference point on the specimen’s surface.  The graph shows that the 

maximum temperatures difference between the surface over the defect and the surface 

of an unaffected area of the specimen is approximately .8 0C.  The time at which the 

maximum difference in surface temperature occurred was recorded between 6300 and 

6600 seconds.  The graph shows that the change in surface temperature continued to 

increase even throughout the end of the analysis during the cooling phase.   

 

Figure 5.13 is a plot of Case 3 surface temperature versus the specimen’s surface 

position in the y-axis.  Six different specified times during the analysis were graphed in 

order to get an overall depiction of how the temperature varies across the width of the 

specimen throughout the entire analysis.  A maximum temperature occurring at the 

center of the specimen directly over the defect was recorded at 60 0C.  The temperature 

readings located over the defects and away from the defects have no noticeable 

temperature change at all times during the analysis. 
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Figure 5.14 is the difference in surface temperature in the y-axis of orientation.  This 

graph gives a better representation of the change in temperature with respect to an 

undisturbed reference point on the specimen’s surface. It can be seen that all of the 

graphs at the time intervals given are all very similar and show almost no change in 

temperature.  The maximum difference in temperature was recorded at .8 0C and occurs 

between 6300 and 6600 seconds. 
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Figure 5.11: Results of Case 3 Temperature vs. Time curve for the SCC Wall 
 

 
 

Figure 5.12: Results of Case 3, difference in Temperature vs. Time.  The difference in 
temperature was calculated by the surface temperature difference between the defect 

and designated reference point 
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Figure 5.13: Case 3 surface temperatures versus the specimen’s surface position in the 

y-axis, for the given heating and cooling durations 
 
 

 
 

Figure 5.14: Case 3 difference in surface temperatures versus the specimen’s surface 
position in the y-axis, for the given heating and cooling durations 
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5.6 CASE 4 

Analysis Case 4 of this is study consisted of the same SCC wall model as Case 1, but 

with a defect depth of .0125 meters.  In this analysis, a thermal surface heat flux (q) and 

time duration of the heat flux (th) were 625 JT-1L-2 and 3600 seconds respectively.  The 

results of the maximum temperature occurrence on the surface of the specimen in 

respect to time are graphed in Figure 5.15.  The maximum surface temperature 

experienced during the analysis was recorded at 57  0C, occurring at the end of the 

heating phase. 

 

Figure 5.16 is a graph of the difference in surface temperature over the void as 

compared to a reference point on the specimen’s surface.  The graph shows that the 

maximum temperatures difference between the surface over the defect and the surface 

of an unaffected area of the specimen is approximately 18 0C.  The time of which the 

maximum change in surface temperature occurred was recorded at 3600 seconds.  This 

change of temperature is large significant when considering the detectability in 

temperature change when performing infrared thermography. 

 

Figure 5.17 is a plot of Case 4 surface temperature versus the specimen’s surface 

position in the y-axis.  Six different specified times during the analysis were graphed in 

order to get an overall depiction of how the temperature varies across the width of the 

specimen.  A maximum temperature occurring at the center of the specimen directly 

over the void was recorded at 57 0C.  The temperature readings located in the regions 

over the defects, all have a noticeable temperature change during the heating phase and 

the initial cooling phase.  
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Figure 5.18 is the difference in surface temperature in the y-axis of orientation. This 

graph gives a better representation of the change in temperature with respect to an 

undisturbed reference point on the specimen’s surface. Figure 5.18 shows a large 

difference in temperature between the defect and reference point at the recorded times 

between 900 to 4500 seconds. All of which could be easily detected during the infrared 

thermography test.  The maximum change in temperature was recorded at 18 0C at the 

end of the heating phase. 

 

 

 

 

 

 
 
 
 
 
 
 
 



www.manaraa.com

80 
 

 
 

Figure 5.15: Results of Case 4 Temperature vs. Time curve for the SCC Wall 
 
 

 
 

Figure 5.16: Results of Case 4, difference in Temperature vs. Time.  The difference in 
temperature was calculated by the surface temperature difference between the defect 

and designated reference point 
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Figure 5.17: Case 4 surface temperatures versus the specimen’s surface position in the 

y-axis, for the given heating and cooling durations 
 
 

 
 
Figure 5.18: Case 4 difference in surface temperatures versus the specimen’s surface 

position in the y-axis, for the given heating and cooling durations 
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5.7 CASE 5 

Analysis Case 5 consisted of the same SCC wall model as Case 1, with a defect depth 

of .0375 meters.  In this analysis, a thermal surface heat flux (q) and time duration of the 

heat flux (th) were 625 JT-1L-2 and 3600 seconds respectively.  The results of the 

maximum temperature occurrence on the surface of the specimen in respect to time are 

graphed in Figure 5.19.  The maximum surface temperature experienced during the 

analysis was recorded at 43 0C occurring at the end of the heating phase.  

 

Figure 5.20 is a graph of the difference in surface temperature over the void as 

compared to a reference point on the specimen’s surface.  The graph shows that the 

maximum temperatures difference between the surface over the void and the surface of 

an unaffected area of the specimen is approximately 4 0C.  The graph also shows a 

small temperature difference during the entire analysis for Case 5, meaning that the 

defect has a very low chance of being detected with the given testing parameters of 

Case 5.  

 

Figure 5.21 is a plot of Case 5 surface temperature versus the specimen’s surface 

position in the y-axis.  The maximum temperature occurrence during this analysis was 

recorded at 43 0C at the center of the specimen.  The temperature readings located in 

the regions over the defect has almost no noticeable temperature change during the 

entire analysis.   

 

Figure 5.22 is the difference in surface temperature in the y-axis of orientation. This 

graph gives a better representation of the change in temperature with respect to an 

undisturbed reference point on the specimen’s surface.  The maximum difference in 
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surface temperature in the y-axis of orientation is approximately 4 0C.  This small change 

in surface temperature illustrates that the detectability of a defect with the current 

parameters of Case 5 would probably not be detected.    
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Figure 5.19: Results of Case 5 Temperature vs. Time curve for the SCC Wall 
 
 

 
 

Figure 5.20: Results of Case 5, difference in Temperature vs. Time.  The difference in 
temperature was calculated by the surface temperature difference between the defect 

and designated reference point. 
 
 
 

20

30

40

50

60

70

80

90

100

0 900 1800 2700 3600 4500 5400 6300

Te
m
pe

ra
tu
re
 (d

eg
re
e 
ce
ls
iu
s)

Time (sec)

‐5

0

5

10

15

20

25

30

35

40

0 900 1800 2700 3600 4500 5400 6300

Δ
Te
m
pe

ra
tu
re
 (d

eg
re
e 
ce
ls
iu
s)

Time (sec)



www.manaraa.com

85 
 

 

 
 
Figure 5.21: Case 5 surface temperatures versus the specimen’s surface position in the 

y-axis, for the given heating and cooling durations 
 
 

 
 

Figure 5.22: Case 5 difference in surface temperatures versus the specimen’s surface 
position in the y-axis, for the given heating and cooling durations 

 
 

20

30

40

50

60

70

80

90

100

0 0.05 0.1 0.15 0.2 0.25 0.3

Te
m
pe

ra
tu
re
 (d

eg
re
es
 c
el
si
us
)

Y‐position (meters)

900 seconds

1800 Seconds

2700 seconds

3600 seconds

4500 seconds

5400 seconds

6600 seconds 

6300 seconds

‐5

0

5

10

15

20

25

30

35

40

0 0.05 0.1 0.15 0.2 0.25 0.3

Δ
Te
m
pe

ra
tu
re
 (d

eg
re
es
 c
el
si
us
)

Y‐position (meters)

900 seconds

1800 Seconds

2700 seconds

3600 seconds

4500 seconds

5400 seconds

6600 seconds 

6300 seconds

1800 seconds

1800 seconds



www.manaraa.com

86 
 

5.8 CASE 6 
 
Analysis Case 6 consisted of the same SCC wall model as Case 1, but with a defect 

depth of .0875 meters.  In this analysis, a thermal surface heat flux (q) and time duration 

of the heat flux (th) were 625 JT-1L-2 and 3600 seconds respectively.  The results of the 

maximum temperature occurrence on the surface of the specimen in respect to time are 

graphed in Figure 5.23.  Figure 5.23 shows a relatively constant surface temperature 

throughout the analysis, with a maximum temperature of 39 0C.   

 

Figure 5.24 is a graph of the difference in surface temperature over the defect as 

compared to a reference point on the specimen’s surface.  The graph shows that the 

maximum temperature difference between the surface over the defect and the surface of 

an unaffected area of the specimen is approximately 0.4 0C.  This clearly shows that 

there is practically no change in temperature on the surface of the specimen during the 

entire Case 6 analysis. 

 

Figure 5.25 is the difference in surface temperature in the y-axis of orientation.  This 

graph represents the change in temperature with respect to an undisturbed reference 

point on the specimen’s surface.  The six different specified times recorded during the 

analysis were all straight lines starting at its initial surface temperature.  This further 

shows that there is no change in temperature along the surface of the specimen.  Figure 

5.26 reinforces this with a maximum change in the surface temperature along the y-axis 

of orientation of only 0.4 0C. 
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Figure 5.23: Results of Case 6 Temperature vs. Time curve for the SCC Wall 
 
 

 
 

Figure 5.24: Results of Case 6, difference in Temperature vs. Time.  The difference in 
temperature was calculated by the surface temperature difference between the defect 

and designated reference point 
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Figure 5.25: Case 6 surface temperatures versus the specimen’s surface position in the 
y-axis, for the given heating and cooling durations. 

 
 

 
 

Figure 5.26:  Case 6 difference in surface temperatures versus the specimen’s surface 
position in the y-axis, for the given heating and cooling durations 
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5.9 CASE 7 

Analysis Case 7 consisted of the same SCC wall model as Case 1, with a defect depth 

of 0.0125 meters.  In this analysis, a thermal surface heat flux (q) and time duration of 

the heat flux (th) were 625 JT-1L-2 and 900 seconds respectively.  The results of the 

maximum temperature occurrence on the surface of the specimen in respect to time are 

graphed in Figure 5.27.  The maximum surface temperature experienced during the 

analysis was recorded at 55 0C.   

 

Figure 5.28 is a graph of the difference in surface temperature over the defect as 

compared to a reference point on the specimen’s surface.  The graph shows that the 

maximum temperature difference between the surface over the defect and the surface of 

an unaffected area of the specimen is approximately 16 0C.  The time at which the 

maximum difference in surface temperature occurred was recorded at 900 seconds, 

which is the end of the heating phase in this Case.   This change of temperature is 

significant when considering the detectability in temperature change when performing 

infrared thermography, which will give a high probability of detecting the defect.  

 

Figure 5.29 is a plot of Case 7 surface temperature versus the specimen’s surface 

position in the y-axis.  Six different specified times during the analysis were graphed, 

with the maximum surface temperature occurring at 900 seconds.  The maximum 

surface temperature recorded was 55 0C.  The recorded temperatures located in the 

regions over the defects have a noticeable temperature change during the analysis, 

which indicates that the capability of detecting defects with the current parameters of 

Case 7 is possible.  
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Figure 5.30 is the difference in surface temperature in the y-axis of orientation, for the six 

specified times.  This graph shows a large difference in temperature between the defect 

and reference point during the analysis.  The maximum change in temperature was 

recorded at 16.2 0C at the end of the heating phase.   
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Figure 5.27: Results of Case 7 Temperature vs. Time curve for the SCC Wall 
 
 

 
 

Figure 5.28: Results of Case 7, difference in Temperature vs. Time.  The difference in 
temperature was calculated by the surface temperature difference between the defect 

and designated reference point 
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Figure 5.29: Case 7 surface temperatures versus the specimen’s surface position in the 
y-axis, for the given heating and cooling durations 

 
 

 
 

Figure 5.30: Case 7 difference in surface temperatures versus the specimen’s surface 
position in the y-axis, for the given heating and cooling durations 
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5.10 SUMMARY OF CASES 

Finite element analyses of the SCC wall for the parametric Cases defined in Table 5.1, 

shows that each parameter does have a significant impact on the detection of defects 

within the concrete subsurface.  The graphs that show the temperature difference on the 

surface of the specimen, directly reflects on how well a defect can be seen by the 

infrared camera.  And as expected, the parameters such as the increase in depth of the 

defect, decrease in the heating temperature and duration of the heating phase all reduce 

the change in the surface temperature as seen on the graphs plotted for Case 1 thru 

Case 7.  
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CHAPTER 6 
DISCUSSION 

 

6.1 INTRODUCTION  

This chapter discusses the influences of the change in the depth of the defect, heating 

intensity and heating duration, on the detectability of the defects within the concrete 

subsurface.  

 

6.2 INFLUENCE OF FLAW DEPTH 

The influence of the flaw depth correlates directly to what was seen in the results of the 

BAM test, and what was expected based on Fourier’s law of thermal conduction: 

ݍ ൌ െ݇ ·
dܶ
dx

 
 

Fourier’s law of heat conduction states that the rate of heat transfer through a material is 

proportional to the temperature gradient within the object’s cross-section.  Therefore, the 

larger the distance dx is, the larger the decrease in heat conduction through a specimen 

is.  The effect of this is less heat penetrating through the material, reducing the ability for 

heat to flow through the region of the defect or abnormalities.  This reduces the 

temperature change between the surface temperature above the defect and the surface 

temperature over an area unaffected by the flaw.  To demonstrate this, the change in 

flaw depth versus temperature has been plotted for the parametric cases studied in 

Chapter 5.  Plotted on Figure 6.1, Figure 6.3 and Figure 6.5 are three graphs each 

representing the surface temperature versus the specimen surface position across the y-

orientation at heating intensity of 1250 Js-1m-2.  Each figure contains three graphs 

analogous to the three depths of the defects, and the three figures each correspond to 

the time of which the data was recorded.  
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Figure 6.1 shows the surface temperature over the defects at 1800 seconds in the 

analysis.  During the earlier stages of the analysis, Figure 6.1 shows that only the defect 

located closest to the surface showed a large surface temperature change over the area 

of the defect.  This can be seen more clearly on Figure 6.2 which shows the difference in 

surface temperature between the surface over the defect and a designated unaffected 

area on the surface of the specimen.  At the depth of .0125 meters, a maximum change 

in temperature was recorded at approximately 27.6 0C on Figure 6.2.  The defect located 

at the depth of .0375 meters has a change in surface temperature of approximately 3.5 

0C, which shows a large temperature difference between the two defect depths.  

Similarly, Figure 6.3 shows the surface temperature over the defects at 3600 seconds in 

the finite element model.  During this time in the analysis, the surface temperature 

reaches its maximum temperature, thus optimizing the detection of the defect.  Figure 

6.4 does show that the defects located at .0125 and .0375 meters both have a change in 

surface temperature greater than 5 0C.  Still the deepest defect located at the depth of 

.0875 meters has almost no change in surface temperature at the defect.   Figure 6.5 

illustrates the surface temperature over the defects near the ending of the analysis at 

5400 seconds.  In both Figure 6.5 and Figure 6.6, the graphs for all depths of the defects 

shows that most of the thermal energy in the system is diminished showing no change in 

surface temperature across the entire surface of the specimen.  Figures 6.7 through 

Figure 6.12 are identical to Figure 6.1 through Figure 6.6, except for a heating intensity 

of 625 Js-1m-2.   
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6.3 INFLUENCE OF HEATING INTENSITY 

The influence of the external heating source intensity was studied as one of the 

parameters in the analyses.  The two external heating sources used in the analyses 

corresponded to heat flux intensities of 1250 Js-1m-2 and 625 Js-1m-2.  In Figure 6.13 and 

Figure 6.14, the difference in surface temperature versus time was graphed for six 

cases.  Figure 6.13 has six graphs plotted, each representing the three defect depths 

and the two heat flux intensities applied to the specimen during that analysis.  This is 

shown in the figure by the solid lines representing the heat flux intensity of 1250 Js-1m-2 

and the dashed lines representing the heat flux intensity of 625 Js-1m-2.  The graphs 

plotted on Figure 6.13 also show the temperature difference between the surface 

temperature directly over the center of the defect and the surface temperature at the 

edge of the defect.  Figure 6.14 is identical to Figure 6.13, but with a change in the 

locations of the temperature readings.  In Figure 6.14, the surface temperature is 

obtained by the difference between the surface temperature at the edge of the defect 

and the surface temperature at a reference point designated at a surface location that is 

unaffected by the defect.   

 

Both figures below clearly show the temperature difference between the two heating 

intensities.  For example, in Figure 6.13 the maximum change in surface temperature 

with a heat flux of 1250 Js-1m-2 and at a defect depth of .0125 meters is approximately 19 

0C.  The maximum change in surface temperature with a heat flux of 625 Js-1m-2 and at a 

defect depth of .0125 meters is approximately 8.2 0C.  Figures 6.13 also shows the 

change in surface temperature for both heating intensities become smaller as the depth 

of the defects  increase, eventually showing almost zero change in surface temperature 
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between both heating intensities.  Figure 6.14 follows the same characteristics as Figure 

6.13, but with slight different temperature reading for each graph.    

 

6.4 INFLUENCE OF HEATING INTENSITY AND HEATING DURATION 

Plotted on Figure 6.15 are the graphs of each Case that contains a defect at the depth of 

.0125 meters.  As shown in the figure, there are three Cases of which the depth was 

located at .0125 meters.  Two Cases had similar heating temperatures at 1250 Js-1m-2 

and the other Case with only half of the heating temperature of the other two Cases.  

Similarly, one of the Cases with a heating source of 1250 Js-1m-2 also had 900 seconds 

of heating time rather than the 3600 seconds of heating time given in the other two 

Cases.  As shown in the Figure below, each alteration of the parameters mention above 

had an impact in increase or decreasing the surface temperature.  

 

Plotted on Figure 6.16 are the graphs of each Case that contains a defect at the depth of 

.0375 meters.  In Figure 6.16, there were two different heating intensities graphed.  Case 

2 with a heat flux of 1250 Js-1m-2 and Case 5 with half of the heat flux of Case 2.  The 

graphs plotted on Figure 6.16 and Figure 6.15 show a significant difference between the 

changes in surface temperature.  The figures show that even with a small change in the 

defect’s depth, a large impact on the surface temperature occurs.  The heat flux and 

heating duration both also have an impact, but the two figures clearly show that the 

depth of the defect has a major influence on whether or not the flaw can be detected.  In 

all of the cases graphed in Figure 6.15, the temperature change on the surface is large 

enough to be theoretically detected by an infrared camera.  In Figure 6.16, Case 2 is 

barely greater than 5 0C, and if Case 3 or Case 6 were plotted (containing defect depth 
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3), the change in surface temperatures would all be well below 5 0C, making the 

detection of the defects unlikely.         
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Figure 6.4: 
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Figure 6.9

Figure 6.10
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Figure 6.11

Figure 6.12

20

30

40

50

60

70

80

90

100

0

Te
m
pe

ra
tu
re
 (d

eg
re
es
 c
el
si
us
)

0

0.5

1

1.5

2

2.5

3

0

Δ
Te
m
pe

ra
tu
re
 (d

eg
re
es
 c
el
si
us
)

1: Surface te

: The differe
defect a

0.05

emperatures
seconds an

ence in surfa
at 5400 seco

0.1

Y‐positio

0.1 0

Y‐positi

104 
 

 
s in the Y-axi
nd a heat flux

 

 
ace temperat
onds and a h

 
 

0.2

on (meters)

.15 0.2

on (meters)

is of orientat
x of 625 Js-1

ture in the Y
heat flux of 6

0.25

tion over the
m-2 

Y-axis of orie
625 Js-1m-2 

0.3

D

D

D

0.3

D

D

D

e defect at 54

entation over

Depth of .0125

Depth .0375m

Depth of .0875

Depth of .0125

Depth .0375m

Depth of .0875

 

400 

 

r the 

m

m

m

m



www.manaraa.com

105 
 

 
 

Figure 6.13: Difference in surface temperature between the center of the defect and the 
edge of the defect 

 
 

 
 

Figure 6.14: Difference in surface temperature between the specimen’s reference point 
and the edge of the defect 
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Figure 6.15: Plotted change in Surface Temperature vs. Time for defects located at the 
depth of .0125 meters (Case 1, Case 4 and Case 7) 

 
 

 
 

Figure 6.16: Plotted change in Surface Temperature vs. Time for defects located at the 
depth of .0375 meters (Case 2, Case 5) 
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CHAPTER 7 
SUMMARY AND CONCLUSIONS 

 
 

7.1 INTRODUCTION  

The objective of this research is to demonstrate and validate the effectiveness of 

impulse thermography for nondestructive testing on Steel-Concrete Composite 

Structures, and to examine the limitations of impulse thermography with parametric 

studies.  In the previous chapters, numerical results from experiments and finite element 

models were obtained in order to verify the use of thermography for composite 

structures.  This research has shown the effectiveness of impulse thermography, but has 

displayed that this method of nondestructive testing has its limitations.   

 

7.2 SUMMARY  

The analyses performed in this research indicate that thermography can be used as a 

form of nondestructive flaw detection for Steel-Concrete Composite structures.  

 

By comparing the results of the BAM model to the BAM test performed by the Technical 

University of Berlin, it was concluded that the finite element results gave reasonable 

prediction of the experimental results obtained in the BAM test.  In order to keep the 

validity of the results obtained from the BAM model, a similar model was created to 

simulate thermography for a Steel-Concrete Composite structure (SCC model).  

 

To investigate the effectiveness and limitations of thermography as a form of NDT on 

SCC walls, several parameters were studied, as discussed in Chapter 5.  The 

parameters mainly focused on the effects of the change in depths of the defects, heating 
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intensity and heating durations of the analysis.  The results discussed in Chapter 5 

showed that defects within the specimen were detectable at certain depths, heating 

intensities and heating duration.  Limitations of the detectability of the defects were seen 

corresponding to the different parametric cases.  This was clearly shown on the graphs 

presented in Chapter 6.  One of the most evident limitations of detecting defects in the 

subsurface of the specimen was the depth of the defect.  Other parameters such as the 

duration of the heating and cooling process helped determine characteristics of the 

defects in the model.  For example, longer heating and cooling durations allowed a more 

definitive thermographic surface image of deeper defects that cannot be seen in shorter 

time durations.            

7.3 CONCLUSIONS 

The following conclusions are drawn from this study: 

• The BAM experimental results produce some discrepancy with the 

surface temperature results of Defect 7.  Although this experiment was 

used as a validation to the results of the FEM model, the BAM experiment 

may have some experimental error. 

 

• Table 3.3 shows that the results obtained from the BAM model does differ 

from the results of the BAM experiment maximum difference in surface 

temperature.  The table shows that there is a range from .02 to 4.95 

Kelvin, difference at the measured defects. However, the results from the 

tables and graphs in Chapter 3, show a comparable surface temperature 

behavior between the model and the experiment data.  For example, the 

deeper flaws caused a smaller surface temperature difference in both 

cases. 
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• Due to the correlation between both the BAM experiment and the BAM 

model results, it can be concluded that the finite element model does 

capture the correct behavior of infrared thermography, but not with 

precise accuracy. 

 

• Based on the parametric cases conducted in Chapter 5 for the SCC wall, 

it can be concluded that the detection of the defects in the composite 

structure is limited based on the depth of the defect.  In the analyses 

conducted in Chapter 5 and Chapter 6, it is shown that all defects directly 

under the steel plate at approximately .5 inches, can be easily 

distinguished by infrared thermography.   At approximately 1.5 inches 

depth, detection of defects are visible at certain heat fluxes and heating 

time durations.  And at approximately 3.5 inches depth, detection of 

defects is not visible based on this study. 

 

• Also studied in Chapter 6 is how each of the different parameter 

fluctuations can be used to optimize the best thermographic image in 

locating defects and other abnormalities.  For example, Figure 6.4 and 

Figure 6.6 shows that the deeper defects can be seen at longer cooling 

durations, where defects close to the surface may not show a clear 

difference in surface temperature; or Figures 6.13 and 6.14 display a 

large differences in surface temperature when the heat flux is increased.   
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7.4 FUTURE STUDIES   

The main component of this research was based on the finite element model created in 

Abaqus to simulate the infrared thermography procedure and process.  Further research 

should be done with various other models, with different materials and thermal 

proprieties to improve the accuracy and understanding of using a finite element model 

for such analyses.  In addition, more convergence studies and mesh refinements on the 

model should be conducted based on other experiments performed similar to the BAM 

experiment.  Additional convergence studies may help eliminate errors in the model and 

also create more accurate results.   

 

With a more consistent and accurate model, more realistic applications should be 

studied; such as other types of composite structures (size, shapes, material properties) 

and different types of defects (delaminations at composite interfaces and defects filled 

with different type of non-concrete material). 

 

In this report only seven parametric cases were tested; heat flux, heating duration and 

flaw depths.  In order to get a better understanding between the correlations of these 

parameters, a larger analysis matrix should be created.  More parametric cases such as 

testing more heat fluxes, creating more defect depths, defects shapes and sizes and 

more heating durations, will allow a better determination of the limitation of infrared 

thermography for Steel-Concrete Composite structures.   

 

Eventually, a live infrared thermography experiment of a Concrete-Steel Composite 

structure should be tested similar to the BAM experiment.  
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